2.

3.

6.

	学校:		考证号:		姓名:
		((在此卷上答题	无效)	
		高 二	诊 断 '	性 测 试	
			数 学		
	本试卷共4页。满分	→ 150 分			
注意	李成也六十 <u>页。</u> 意 事项:) 130 /) °			
	1. 答题前,考生务	·必在试题卷、答题 形码的"准考证号			E号、姓名。考生要认真核对答 姓名是否一致。
	2. 回答选择题时,	选出每小题答案	后,用铅笔把答是	迈卡上对应题目的	方答案标号涂黑。如需改动,用 好在答题卡上。写在本试卷上无
	3. 考试结束, 考生	必须将试题卷和答	等题卡一并交 回。		
– ,	选择题:本题共 8 / 要求的。	小题,每小题 5 分	·,共 40 分。在4	每小题给出的四个	`选项中,只有一项是符合题 目
1.	设集合 $A = \left\{ x \in \mathbf{Z} \middle x^2 \right\}$	$\left\{-x-2\leq 0\right\}, B=$	= {0,1,2,3} ,则 A	$\bigcap B =$	
	A. $\{0,1\}$				(-2,-1,0,1,2,3)
2.	$\left(\sqrt{x} - \frac{2}{\sqrt[3]{x}}\right)^5 $ 的展开	式中的常数项为			
	A160	В80	C. 80	ľ	0. 160
3.	设复数 z1, z2, z3满足 z	$ z_3 \neq 0$, $ z_1 = z_2 $,则		
	A. $z_1 = \pm z_2$	B. $z_1^2 = z_2^2$	$\mathbf{C}. \ z_1 \cdot z_2$	$z_3 = z_2 \cdot z_3 \qquad \qquad \Gamma$	$ z_1 \cdot z_3 = z_2 \cdot z_3 $
4.	若 $a>0,b>0$,则"	"a+b<2"的一户	卜必要不充分条件	-是	
	$A. \frac{1}{a} + \frac{1}{b} < 1$	B. <i>ab</i> < 1	C. a^2	$+b^2 < 2$	$0. \sqrt{a} < \sqrt{2-b}$
5.	深度学习是人工智能	的一种具有代表的	性的实现方法,它	已是以神经网络为	出发点的. 在神经网络优化中,
	指数衰减的学习率构	莫型为 $L = L_0 D^{\frac{G}{G_0}}$,	其中 L 表示每一	轮优化时使用的	学习率, L_0 表示初始学习率, D
	表示衰减系数, G	表示训练迭代轮数	$(G_0$ 表示衰减速	速度. 已知某个指	省数衰减的学习率模型的初始学
	习率为0.5,衰减速	度为22,且当训练	东迭代轮数为22日	时,学习率衰减为	可0.45,则学习率衰减到0.05以
	下所需的训练迭代转	伦数至少为 (参考	数据: lg2≈0.30	$010, \lg 3 \approx 0.4771$	
	A. 11	B. 22	C. 227	΄ Γ	D. 481
6.	已知抛物线 $C: y^2 =$	2px(p>0)的焦点	(b) = (b) + (b) = (b) + (b) + (b) + (b) = (b) + (b	顶斜角为 $\frac{\pi}{3}$ 的直约	战交 C 于 A,B 两点,线段 AB 中
	点的纵坐标为 $\sqrt{3}$,	则 $ AB $ =			
	. 8	D 4	Q 0	T-	24

更多福建各地市质检试卷及答案可下载"升学指南"APP

关于函数 $f(x) = A\sin(2x + \varphi)$, 有下列四个命题: 甲: f(x)在 $\left(5\pi, \frac{27\pi}{5}\right)$ 单调递增; 乙: $-\frac{\pi}{6}$ 是 f(x) 的一个极小值点; 丙: $\frac{\pi}{3}$ 是 f(x) 的一个极大值点; 丁: 函数 y = f(x) 的图象向左平移 $\frac{\pi}{3}$ 个单位后所得图象关于 y 轴对称. 其中只有一个是假命题,则该命题是 A. 甲 C. 丙 D. \top B. 7. 8. 已知 f(x) 是定义在 **R** 上的函数,且函数 y = f(x+1) - 1 是奇函数,当 $x < \frac{1}{2}$ 时, $f(x) = \ln(1-2x)$, 则曲线 y = f(x) 在 x = 2 处的切线方程是 C. y = -2x + 2 D. y = -2x + 6A. v = x - 4 B. v = x二、选择题: 本题共 4 小题, 每小题 5 分, 共 20 分。在每小题给出的选项中, 有多项符合题目要求。全部选 对的得5分,部分选对的得2分,有选错的得0分。 "杂交水稻之父"袁隆平一生致力于杂交水稻技术的研究、应用与推广,创建了超级杂交稻技术体系, 为我国粮食安全、农业科学发展和世界粮食供给作出了杰出贡献。某杂交水稻种植研究所调查某地水 稻的株高,得出株高 ξ (单位: cm)近似服从正态分布 $N(100,10^2)$. 已知 $X \sim N(\mu,\sigma^2)$ 时,有 $P(|X - \mu| \le \sigma) \approx 0.6827$, $P(|X - \mu| \le 2\sigma) \approx 0.9545$, $P(|X - \mu| \le 3\sigma) \approx 0.9973$. 下列说法正确的是 A. 该地水稻的平均株高约为100 cm B. 该地水稻株高的方差约为100 C. 该地株高超过110 cm 的水稻约占68.27% D. 该地株高低于130 cm 的水稻约占99.87% 10. 若 α , β 满足 $\sin \alpha = -\frac{1}{2}$, $\cos(\alpha - \beta) = \frac{1}{2}$, 则 β 可以是 B. $\frac{\pi}{2}$ C. $\frac{5\pi}{6}$ D. π 11. 在正方体 $ABCD - A_iB_iC_iD_i$ 中, M,N,P 分别为棱 AB,CC_i,C_iD_i 的中点, $Q \in$ 平面 MNP , $B_iQ = AB$, 直线 B_iQ 和直线 MN 所成角为 θ ,则 B. θ 的最小值为 $\frac{\pi}{2}$ A. $MN // AC_1$ C. A,M,N,P 四点共面 D. PQ // 平面 ACD, 12. 已知 $\triangle A_n B_n C_n$ $(n=1,2,3,\cdots)$ 是直角三角形, A_n 是直角,内角 A_n, B_n, C_n 所对的边分别为 a_n, b_n, c_n ,面积 为 S_n . 若 $b_1 = 4$, $c_1 = 3$, $b_{n+1}^2 = \frac{a_{n+1}^2 + c_n^2}{3}$, $c_{n+1}^2 = \frac{a_{n+1}^2 + b_n^2}{3}$, 则 B. $\{S_{2n-1}\}$ 是递减数列 A. $\{S_{2n}\}$ 是递增数列 C. $\{b_n - c_n\}$ 存在最大项 D. $\{b_{n} - c_{n}\}$ 存在最小项

M 数学试题 第 2 页 (共 4 页)

更多福建各地市质检试卷及答案可下载"升学指南"APP

- 三、填空题:本题共4小题,每小题5分,共20分。
- 13. 已知a,b是不共线的两个单位向量,则a+b与a-b的夹角为 .
- 14. 直线 y = a(x+2) 与曲线 $x^2 y|y| = 1$ 恰有 2 个公共点,则实数 a 的取值范围为______.
- 15. 写出一个同时具有下列性质①②③的函数 f(x) =_____. ①定义域为 **R**; ②值域为 $(-\infty,1)$; ③对任意 $x_1, x_2 \in (0,+\infty)$ 且 $x_1 \neq x_2$, 均有 $\frac{f(x_1) f(x_2)}{x_1 + x_2} > 0$.
- 16.《缀术》是中国南北朝时期的一部算经,汇集了祖冲之和祖暅父子的数学研究成果.《缀术》中提出的"缘幂势既同,则积不容异"被称为祖暅原理,其意思是:如果两等高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等.该原理常应用于计算某些几何体的体积.如图,某个西晋越窑卧足杯的上下底为互相平行的圆面,侧面为球面的一部分,上底直径为 4√6 cm,下底直径为6 cm,上下底面间的距离为3 cm,则该卧足杯侧面所在的球面的半径是______cm;卧足杯的容积是 cm³(杯的厚度忽略不计).

四、解答题: 共70分。解答应写出文字说明、证明过程或演算步骤。

17. (10分)

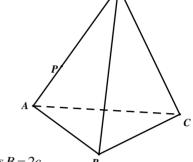
已知等比数 $\overline{\mathcal{M}}_{\{a_n\}}$ 的首项为-2,前n项和为 S_n ,且 S_{n+2} , S_n , S_{n+1} 成等差数列.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 设 $b_n = \left\lceil \frac{n+1}{2} \right\rceil$, 求数列 $\left\{ a_n b_n \right\}$ 的前10项和 T_{10} . ($\left[x \right]$ 表示不超过x的最大整数)
- 18. (12分)

冬季两项是第 24 届北京冬奥会的比赛项目之一,它把越野滑雪和射击两种特点不同的竞赛项目结合在一起. 其中 20km 男子个人赛的规则如下:

- ①共滑行 5 圈 (每圈 4km), 前 4 圈每滑行 1 圈射击一次, 每次 5 发子弹;
- ②射击姿势及顺序为:第1圈滑行后卧射,第2圈滑行后立射,第3圈滑行后卧射,第4圈滑行后立射,第5圈滑行直达终点:
 - ③如果选手有n发子弹未命中目标,将被罚时n分钟:
 - ④最终用时为滑雪用时、射击用时和被罚时间之和, 最终用时少者获胜.

已知甲、乙两人参加比赛,甲滑雪每圈比乙慢 36 秒,甲、乙两人每发子弹命中目标的概率分别为 $\frac{4}{5}$ 和


- $\frac{3}{4}$. 假设甲、乙两人的射击用时相同,且每发子弹是否命中目标互不影响.
 - (1) 若在前三次射击中,甲、乙两人的被罚时间相同,求甲胜乙的概率;
 - (2) 若仅从最终用时考虑, 甲、乙两位选手哪个水平更高? 说明理由.

更多福建各地市质检试卷及答案可下载"升学指南"APP

19. (12分)

如图,在三棱锥V-ABC中, $\triangle VAB$ 和 $\triangle ABC$ 均是边长为4的等边三角形.P是棱VA上的点, $VP = \frac{2}{3}VA$, 过 P 的平面 α 与直线 VC 垂直,且平面 $\alpha \cap \text{平面 } VAB = l$.

- (1) 在图中画出1, 写出画法并说明理由;
- (2) 若直线 VC 与平面 ABC 所成角的大小为 $\frac{\pi}{3}$,求过 l 及点 C 的平面与平面 ABC 所成的锐二面角的 余弦值.

20. (12分)

 \triangle *ABC* 的内角 *A,B,C* 所对的边分别为 *a,b,c* , a=6 , $b+12\cos B=2c$.

- (1) 求 A 的大小;
- (2) M 为 \triangle ABC 内一点,AM 的延长线交 BC 于点 D,_____,求 \triangle ABC 的面积. 请在下列三个条件中选择一个作为已知条件补充在横线上,使△ABC存在,并解决问题.

- 上 ω , $MD = \sqrt{3}$; ③ M 为 \triangle ABC 的内心, $AD = 3\sqrt{3}$.

21. (12分)

已知椭圆C的中心为O,离心率为 $\frac{\sqrt{2}}{2}$.圆O在C的内部,半径为 $\frac{\sqrt{6}}{3}$.P,Q分别为C和圆O上的 动点,且P,Q两点的最小距离为 $1-\frac{\sqrt{6}}{2}$.

- (1) 建立适当的坐标系,求C的方程;
- (2) $A,B \neq C$ 上不同的两点,且直线 AB 与以 OA 为直径的圆的一个交点在圆 O 上. 求证:以 AB 为直 径的圆过定点.

22. (12分)

已知函数 $f(x) = \ln x - \frac{a+1}{x}$, $g(x) = a(x-2)e^{1-x} - 1$, 其中 $a \in \mathbb{R}$.

- (1) 讨论 f(x) 的单调性:
- (2) 当 $0 < a < \frac{5}{3}$ 时,是否存在 x_1, x_2 ,且 $x_1 \neq x_2$,使得 $f(x_i) = g(x_i)(i = 1, 2)$?证明你的结论.

高 三 诊 断 性 测 试

数学参考答案及评分细则

评分说明:

- 1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。
- 2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
 - 3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数。
 - 4. 只给整数分数。选择题和填空题不给中间分。
- 一、选择题:本大题考查基础知识和基本运算。每小题 5 分,满分 40 分。
 - 1. B 2. B 3. D 4. B 5. D 6. C 7. A 8. D
- 二、选择题:本大题考查基础知识和基本运算。每小题 5 分,满分 20 分。全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分。
 - 9. ABD 10. AC 11. BD 12. ACD
- 三、填空题:本大题考查基础知识和基本运算。每小题 5 分,满分 20 分。

13.
$$\frac{\pi}{2}$$
; 14. $\left(-\frac{\sqrt{3}}{3},1\right)$; 15. 答案不唯一,如: $f(x)=1-\frac{1}{2^x}, f(x)=\begin{cases}1-\frac{1}{x}, x>1,\\x-1, x\leqslant 1\end{cases}$ 等;

16. 5: 54π .

- 四、解答题:本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. 本小题主要考查等差数列、等比数列、递推数列及数列求和等基础知识,考查运算求解能力、逻辑推理能力和创新能力等,考查化归与转化思想、分类与整合思想、函数与方程思想、特殊与一般思想等,考查逻辑推理、数学运算等核心素养,体现基础性和创新性.满分10分.

解法一: (1) 因为
$$S_{n+2}$$
, S_n , S_{n+1} 成等差数列,所以 $S_n - S_{n+2} = S_{n+1} - S_n$, …… 3 分 即 $a_{n+2} = -2a_{n+1}$, 设 $\{a_n\}$ 的公比为 q ,则 $q = -2$, …… 4 分 所以 $a_n = -2 \times (-2)^{n-1} = (-2)^n$ … 6 分

所以 $4T_{10} = 1 \times 2^3 + 2 \times 2^5 + \dots + 5 \times 2^{11}$,

数学参考答案及评分细则 第2页(共16页)

(2)	依题意, $b_1 = 1$, $b_2 = 1$, $b_3 = 2$, $b_4 = 2$, $b_5 = 3$, $b_6 = 3$, $b_7 = 4$, $b_8 = 4$, $b_9 = 5$, $b_{10} = 5$,
	·····································
	所以 5 2 4 . 2 2 2
1	$\Gamma_{10} = -2 + (-2)^2 + 2 \times (-2)^3 + 2 \times (-2)^4 + 3 \times (-2)^5 + 3 \times (-2)^6 + 4 \times (-2)^7 + 4 \times (-2)^8 + 5 \times (-2)^9 + 5 \times (-2)^8 + 2 \times (-$
=	$= [-2 + (-2)^{2}] + 2 \times [(-2)^{3} + (-2)^{4}] + 3 \times [(-2)^{5} + (-2)^{6}] + 4 \times [(-2)^{7} + (-2)^{8}] + 5 \times [(-2)^{9} + (-2)^{10}]$ $= 9 \%$
=	$= 2 + 2^4 + 3 \times 2^5 + 4 \times 2^7 + 5 \times 2^9$
=	=2+16+96+512+2560
=	= 3186 ·
8. オ	、小题主要考查独立事件的概率、互斥事件的概率,二项分布、数学期望等基础知识;
Ź	各查数学建模能力,运算求解能力,逻辑推理能力,创新能力以及阅读能力等,考查
	允计与概率思想、分类与整合思想等; 考查数学抽象, 数学建模和数学运算等核心素
	序, 体现应用性和创新性。满分 12 分。
	上(1)甲滑雪用时比乙多 5×36=180 秒=3 分钟,因为前三次射击,甲、乙两人的 支罚时间相同,所以在第四次射击中,甲至少要比乙多命中 4 发子弹。
-	处"甲胜乙"为事件 A,"在第四次射击中,甲至少安比乙多亚甲 4 及丁舜。 设"甲胜乙"为事件 A,"在第四次射击中,甲有 4 发子弹命中目标,乙均未命中目标"
	y事件 B,
	"在第四次射击中,甲有5发子弹命中目标,乙至多有1发子弹命中目标"为事件 C,
	·····································
Ì	$P(B) = C_5^1 \frac{1}{5} \times \left(\frac{4}{5}\right)^4 \times \left(\frac{1}{4}\right)^5, P(C) = \left(\frac{4}{5}\right)^5 \times \left[\left(\frac{1}{4}\right)^5 + C_5^4 \left(\frac{1}{4}\right)^4 \times \frac{3}{4}\right], \dots 4 \not \exists $
	所以, $P(A) = P(B) + P(C) = \frac{69}{12500}$.
Ħ	『甲胜乙的概率为 <u>-69</u> 5 分
(2)	依题意得,甲选手在比赛中未击中目标的子弹数为 X , 乙选手在比赛中未击中目标
Á	勺子弹数为 Y ,则 $X \sim B\left(20, \frac{1}{5}\right), Y \sim B\left(20, \frac{1}{4}\right)$,
Ĥ	所以甲被罚时间的期望为 $1 \times EX = 1 \times 20 \times \frac{1}{5} = 4$ (分钟),
Z	乙被罚时间的期望为 $1 \times EY = 1 \times 20 \times \frac{1}{4} = 5$ (分钟), ························9 分
	人在赛道上甲选手滑行时间慢 3 分钟,
Ĥ	所以甲最终用时的期望比乙多2分钟. ····································
[2 建实压	图此,仅从最终用时考虑,乙选手水平更高. ····································
r14\-	→・ \ L/ 1 ⁻¹ /2/元十五 ・

数学参考答案及评分细则 第3页(共16页)

- 19. 本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,直线与平面所成角、二面角等基础知识;考查空间想象能力,逻辑推理能力,运算求解能力等;考查化归与转化思想,数形结合思想,函数与方程思想等;考查直观想象,逻辑推理,数学运算等核心素养;体现基础性和综合性.满分12分.
- 解法一: (1) 如图,在 \triangle VAC 内过 P 作 $PM \perp VC$,垂足为 M,在 \triangle VBC 内过 M 作 $MN \perp VC$ 交 VB 于 N,

由于过空间一点与己知直线垂直的平面有且只有一个, 所以平面 PMN 与平面 α 重合,

(2) 因为 $\triangle VAB$ 和 $\triangle ABC$ 均为等边三角形,

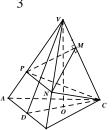
所以VA = VB, AC = BC,又因为VC = VC,所以 $\triangle VAC \cong \triangle VBC$,所以 $\angle PVM = \angle NVM$,又VM = VM,所以 $Rt \triangle VPM \cong Rt \triangle VNM$,所以VP = VN,所以 $VN = \frac{2}{3}VB$. ……5分

如图,设AB的中点为D,连结VD,CD,

因为 $\triangle VAB$ 和 $\triangle ABC$ 均为等边三角形,

所以VA = VB, AC = BC, 所以 $AB \perp VD$, $AB \perp CD$,

又因为 $VD \cap CD = D$,所以 $AB \perp$ 平面VCD,因为 $AB \subset$ 平面ABC,所以平面 $ABC \perp$ 平面VCD.


因为平面 $ABC \cap$ 平面 VCD = CD , $VO \subset$ 平面 VCD ,

所以VO 上平面ABC,

因为 $\triangle VAB$ 和 $\triangle ABC$ 均是边长为 4 的等边三角形,所以 $VD = DC = 2\sqrt{3}$,

所以 $\triangle VCD$ 是等边三角形,所以VO=3, $DO=OC=\sqrt{3}$.

以O为原点,分别以 \overrightarrow{OC} , \overrightarrow{OV} 的方向为y轴和z轴正方向建立如图所示的空间直角坐标

数学参考答案及评分细则 第4页(共 16页)

系O-xvz,

$$\mathbb{M} A(-2,-\sqrt{3},0), B(2,-\sqrt{3},0), C(0,\sqrt{3},0), V(0,0,3),$$

所以 $C\vec{V} = (0, -\sqrt{3}, 3), C\vec{A} = (-2, -2\sqrt{3}, 0), A\vec{B} = (4, 0, 0),$

$$C\dot{P} = \frac{1}{3}C\dot{V} + \frac{2}{3}C\dot{A} = \left(-\frac{4}{3}, -\frac{5\sqrt{3}}{3}, 1\right), \overline{PN} = \frac{2}{3}\overline{AB} = \left(\frac{8}{3}, 0, 0\right).$$

过1 及点C 的平面为平面CPN,

设平面 CPN 的法向量为 n = (x, v, z),

设半面
$$CPN$$
 的法向量为 $n = (x, y, z)$,
$$\emptyset \left\{ \frac{\overline{CP} \cdot n = 0}{\overline{PN} \cdot n = 0}, \text{ in } \begin{cases} -\frac{4}{3}x - \frac{5\sqrt{3}}{3}y + z = 0, \\ \frac{8}{3}x = 0. \end{cases} \right.$$

易知,平面 ABC 的一个法向量为 m = (0,0,1) , ……

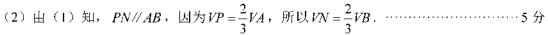
所以
$$\cos \langle m, n \rangle = \frac{m \cdot n}{|m| \cdot |n|} = \frac{5}{2\sqrt{7}} = \frac{5\sqrt{7}}{14}$$

所以过I 及点C 的平面与平面 ABC 所成的锐二面角的余弦值为 $\frac{5\sqrt{7}}{1}$

则直线 PN 即为直线1. 理由如下:

取VC的中点O,连结AO,BO,

因为 $\triangle VAB$ 和 $\triangle ABC$ 均为等边三角形,


所以VA = AC, VB = BC,所以 $VC \perp AO, VC \perp BO$,

又因为 $AQ \cap BQ = Q$,所以VC 上半面ABQ,

又因为VC 上平面 α , 所以平面 α // 平面ABQ,

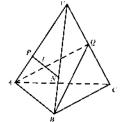
又因为平面 α 个平面VAB=1,平面ABO个平面VAB=AB,

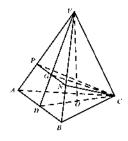
所以 AB//1, 所以直线 PN 即为直线1.....

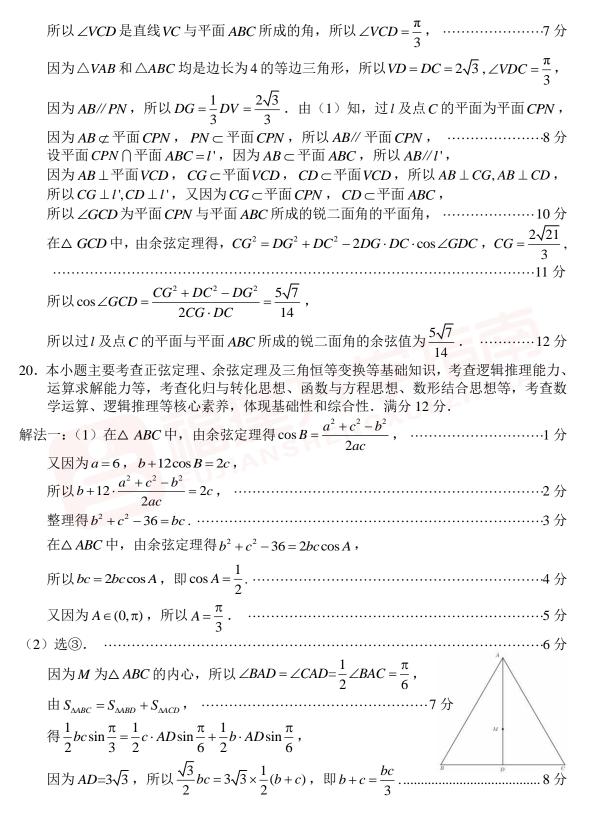
设 AB 的中点为 D , 连结 VD , 交 PN 于 G , 连结 CG ,

因为 $\triangle VAB$ 和 $\triangle ABC$ 均为等边三角形,

所以VA = VB, AC = BC, 所以 $AB \perp VD$, $AB \perp CD$,


又因为 $VD \cap CD = D$,


所以 AB 上平面 VCD , AB \subset 平面 ABC ,

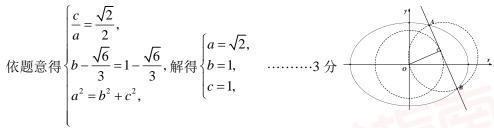

所以平面 ABC 上平面 VCD.

在 \triangle VCD中,作 $VO \perp CD$,垂足为O,

因为平面 $ABC \cap$ 平面 VCD = CD , $VO \subset$ 平面 VCD , 所以 $VO \perp$ 平面 ABC ,

数学参考答案及评分细则 第6页(共16页)

	由(1)可得 $b^2 + c^2 - 36 = bc$,即 $(b+c)^2 - 3bc = 36$, 9 分
	所以 $\frac{(bc)^2}{9} - 3bc - 36 = 0$,即 $(bc + 9)(\frac{bc}{9} - 4) = 0$,
	又因为 $bc>0$,所以 $bc=36$, 11 分
	又因为 $bc > 0$,所以 $bc = 36$,
解法	云: (1) 因为 $a=6$, $b+12\cos B=2c$, 所以 $b+2a\cos B=2c$,
	在 $\triangle ABC$ 中,由正弦定理得 $\sin B + 2\sin A\cos B = 2\sin C$,
	即 $\sin B = 2\cos A \sin B$,
	因为 $B \in (0,\pi)$,
	所以 $\sin B \neq 0$,故 $\cos A = \frac{1}{2}$. 4分
	又因为 $A \in (0,\pi)$,所以 $A = \frac{\pi}{3}$
(2) 选②6分
	eta 为 M 为 \triangle ABC的垂心,
	所以 $\angle BMD = \frac{\pi}{2} - \angle MBD = \frac{\pi}{2} - \left(\frac{\pi}{2} - \angle ACB\right) = \angle ACB$,又 $MD = \sqrt{3}$,
	所以在 $\triangle MBD$ 中, $BD = MD \cdot \tan \angle BMD = \sqrt{3} \tan \angle ACB$,
	同理可得 $CD = \sqrt{3} \tan \angle ABC$,8 分
	又因为 $BD+CD=6$,所以 $\sqrt{3} \tan \angle ABC+\sqrt{3} \tan \angle ACB=6$,即 $\tan \angle ABC+\tan \angle ACB=2\sqrt{3}$,
	又因为在 $\triangle ABC$ 中, $\tan(\angle ABC + \angle ACB) = -\tan \angle BAC = -\sqrt{3}$,
	所以 $\frac{\tan \angle ABC + \tan \angle ACB}{1 - \tan \angle ABC \tan \angle ACB} = -\sqrt{3}$,
	因此 tan ∠ABC tan ∠ACB 为言程 2 2 5 3 2 0 两相 即 4 4 ABC 4 4 CB 5
	故 $\tan \angle ABC$, $\tan \angle ACB$ 为方程 $x^2 - 2\sqrt{3}x + 3 = 0$ 两根,即 $\tan \angle ABC = \tan \angle ACB = \sqrt{3}$,因为 $\angle ABC$, $\angle ACB \in (0,\pi)$,
	所以 $\angle ABC = \angle ACB = \frac{\pi}{3}$,所以 $\triangle ABC$ 为等边三角形, … 11 分
	所以 $S_{\Delta ABC} = \frac{1}{2} \times 6^2 \times \frac{\sqrt{3}}{2} = 9\sqrt{3}$.
解法	三: (1) 同解法一
(2))选②


数学参考答案及评分细则 第7页(共 16页)

即
$$4\left[\frac{3}{4}\sin^2(B+\frac{\pi}{6})-\frac{1}{4}\cos^2(B+\frac{\pi}{6})\right]=3\sin(B+\frac{\pi}{6}),$$
即 $4\sin^2(B+\frac{\pi}{6})-3\sin(B+\frac{\pi}{6})-1=0,$ 即 $\left[\sin(B+\frac{\pi}{6})-1\right]\left[4\sin(B+\frac{\pi}{6})+1\right]=0,$ … 10 分 因为 $A=\frac{\pi}{3}$,所以 $0 < B < \frac{2\pi}{3}$,所以 $B+\frac{\pi}{6} = (\frac{\pi}{6}, \frac{5\pi}{6}),$ 所以 $\sin(B+\frac{\pi}{6})>0$,故 $\sin(B+\frac{\pi}{6})=1$, 即 $B+\frac{\pi}{6}=\frac{\pi}{2},$ 即 $B=\frac{\pi}{3}$,所以 ABC 为等边三角形, 11 分 所以 $S_{MBC}=\frac{1}{2}\times 6^2\times \frac{\sqrt{3}}{2}=9\sqrt{3}.$ 12 分解法五: (1) 同解法— 5 分 (2) 选③. 6 分 因为 ABC 的内心,所以 ABC 的人的 ABC 的 ABC ABC

$$2R = \frac{BC}{\sin A} = \frac{6}{\sin \frac{\pi}{3}} = 4\sqrt{3}$$
,即 $R = 2\sqrt{3}$,因为 M 为外心,所以 $AM = 2\sqrt{3}$,与 $AM = 4$ 矛

盾,故不能选①.

- 21. 本小题主要考查椭圆的标准方程及简单几何性质,直线与圆、椭圆的位置关系,平面向量等基础知识;考查运算求解能力,逻辑推理能力,直观想象能力和创新能力等;考查数形结合思想,函数与方程思想,化归与转化思想等;考查直观想象,逻辑推理,数学运算等核心素养;体现基础性,综合性与创新性.满分12分.

(2) 因为直线 AB 与以 OA 为直径的圆的一个交点在圆 O 上,

(i) 当直线
$$AB$$
 垂直于 x 轴时,不妨设 $A\left(\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}\right), B\left(\frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{3}\right)$,

此时 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$,所以 $OA \perp OB$,故以AB为直径的圆过点O. ………………6分

(ii) 当直线 AB 不垂直于 x 轴时,设直线 AB 的方程为 y = kx + m, $A(x_1, y_1), B(x_2, y_2)$.

因为AB与圆O相切,所以O到直线AB的距离 $\frac{|m|}{\sqrt{k^2+1}} = \frac{\sqrt{6}}{3}$,

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = x_1 x_2 + y_1 y_2 = x_1 x_2 + (kx_1 + m)(kx_2 + m) = (1 + k^2)x_1 x_2 + km(x_1 + x_2) + m^2$$

$$= \left(1 + k^2\right) \left(\frac{2m^2 - 2}{2k^2 + 1}\right) + km \left(\frac{-4km}{2k^2 + 1}\right) + m^2$$

数学参考答案及评分细则 第10页(共16页)

$$= \frac{(1+k^2)(2m^2-2)+km(-4km)+m^2(2k^2+1)}{2k^2+1}$$

$$= \frac{3m^2-2k^2-2}{2k^2+1} = 0,$$

$$\text{ $\mathbb{M} \cup OA \perp OB , } \text{ $\mathbb{M} \cup AB \text{ \mathcal{B} } \text{ \mathcal{B} } \text{ \mathcal{C} } \text{ $\mathcal{C}$$$

数学参考答案及评分细则 第11页(共16页)

$$= \frac{4}{3} - 2 \left[1 + \left(-\frac{x_0}{y_0} \right)^2 \right] \left(-\frac{18x_0^2 - 4}{6 + 9x_0^2} + \frac{24x_0^2}{6 + 9x_0^2} - x_0^2 \right)$$

$$= \frac{4}{3} - 2 \left(1 + \frac{x_0^2}{2 - x_0^2} \right) \left(-\frac{18x_0^2 - 4}{6 + 9x_0^2} + \frac{24x_0^2}{6 + 9x_0^2} - x_0^2 \right)$$

$$= \frac{4}{3} - 2 \cdot \frac{2}{2 - 3x_0^2} \cdot \frac{4 - 9x_0^4}{6 + 9x_0^2}$$

$$= \frac{4}{3} - \frac{4}{3} = 0.$$

$$\text{所以} |OA|^2 + |OB|^2 = |AB|^2, \text{ if } OA \perp OB, \text{ if } AB \text{ if }$$

	(ii) 当直线 AB 垂直于 x 轴时,不妨设 $A\left(\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}\right), B\left(\frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{3}\right)$,
解法 (2)	此时 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$,所以 $OA \perp OB$,故以 AB 为直径的圆过点 O .
	(i) 当直线 AB 不垂直于 x 轴时, 设直线 AB 的方程为 $y = kx + m$, $A(x_1, y_1), B(x_2, y_2)$.
[因为 AB 与圆 O 相切,所以 O 到直线 AB 的距离 $\frac{ m }{\sqrt{k^2+1}} = \frac{\sqrt{6}}{3}$,
	即 $3m^2 - 2k^2 - 2 = 0$
İ	$\pm \begin{cases} y = kx + m, \\ \frac{x^2}{2} + y^2 = 1, \end{cases} $ 得 $\left(2k^2 + 1\right)x^2 + 4kmx + 2m^2 - 2 = 0, \dots 7$ 分
	所以 $x_1 + x_2 = \frac{-4km}{2k^2 + 1}, x_1 x_2 = \frac{2m^2 - 2}{2k^2 + 1}$,
	$y_1 + y_2 = k(x_1 + x_2) + 2m = \frac{2m}{2k^2 + 1}$
ļ	以 AB 为直径的圆 N 的圆心为 $N\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$,即 $\left(\frac{-2km}{2k^2+1}, \frac{m}{2k^2+1}\right)$.
2	半径 $r = \frac{ AB }{2} = \frac{1}{2}\sqrt{1+k^2} x_2 - x_1 $
	$= \frac{1}{2}\sqrt{1+k^2}\sqrt{(x_1+x_2)^2-4x_1x_2} = \frac{\sqrt{1+k^2}}{2}\cdot\sqrt{\frac{16k^2m^2}{\left(2k^2+1\right)^2}-\frac{8m^2-8}{2k^2+1}}$
I	$=\frac{\sqrt{1+k^2}}{2}\cdot\frac{\sqrt{16k^2-8m^2+8}}{2k^2+1}=\frac{\sqrt{1+k^2}\cdot\sqrt{4k^2-2m^2+2}}{2k^2+1},$ 以 AB 为直径的圆的方程为
	$\left(x + \frac{2km}{2k^2 + 1}\right)^2 + \left(y - \frac{m}{2k^2 + 1}\right)^2 = \left(\frac{\sqrt{1 + k^2} \cdot \sqrt{4k^2 - 2m^2 + 2}}{2k^2 + 1}\right)^2,$
3	整理得 $x^2 + y^2 + \frac{4km}{2k^2 + 1}x - \frac{2m}{2k^2 + 1}y = 0$,
	故以 AB 为直径的圆过定点 O11 分
	(ii) 当直线 AB 垂直于 x 轴时,不妨设 $A\left(\frac{\sqrt{6}}{3}, \frac{\sqrt{6}}{3}\right), B\left(\frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{3}\right)$,
	此时 $\overrightarrow{OA}\cdot\overrightarrow{OB}=0$,所以 $OA\perp OB$,故以 AB 为直径的圆过点 O . 综上,以 AB 为直径的圆过点 O
	本小题主要考查导数,函数的单调性、零点、不等式等基础知识;考查逻辑推理能力,
	数学参考答案及评分细则 第13页(共 16页)

直观想象能力,运算求解能力和创新能力等;考查函数与方程思想,化归与转化思想,分类与整合思想等;考查逻辑推理,直观想象,数学运算等核心素养;体现基础性、综合性和创新性.满分 12 分.

解法一: (1) 依题意, f(x)的定义域为 $(0,+\infty)$,

① 当 $a \ge -1$ 时,f'(x) > 0恒成立,所以f(x)在 $(0,+\infty)$ 单调递增;

-------2 分

② $\exists a < -1 \text{ th}, \ \diamondsuit f'(x) = 0, \ \ \# x = -a - 1,$

当 $x \in (0, -a-1)$ 时, f'(x) < 0, 所以f(x)在(0, -a-1)单调递减;

当 $x \in (-a-1,+\infty)$ 时,f'(x) > 0,所以f(x)在 $(-a-1,+\infty)$ 单调递增;

综上, 当 $a \ge -1$ 时, f(x)在 $(0,+\infty)$ 单调递增;

当a < -1时,f(x)在(0,-a-1)单调递减,在 $(-a-1,+\infty)$ 单调递增.4分

......5分

①当 $x \ge 3$ 时,h'(x) > 0恒成立,所以h(x)在[3,+ ∞)单调递增,

又因为
$$0 < a < \frac{5}{3}$$
,所以 $h(3) = \ln 3 - \frac{a+1}{3} - \frac{a}{e^2} + 1 > \ln 3 - \frac{a}{e^2} > 1 - \frac{a}{e^2} > 0$,

② $\stackrel{\text{def}}{=} 0 < x < 3 \text{ pd}, \quad \text{deg}(x) = e^{x-1} - x, \quad \text{deg}(x) = e^{x-1} - 1,$

 $\pm 0 < x < 1$ 时, $\varphi'(x) < 0$,所以 $\varphi(x)$ 在(0,1)单调递减;

当1 < x < 3时, $\varphi'(x) > 0$,所以 $\varphi(x)$ 在(1,3)单调递增;

所以
$$\varphi(x) \ge \varphi(1) = 0$$
,即 $e^{x-1} \ge x$,因为 $x > 0$,所以 $\frac{1}{e^{x-1}} \le \frac{1}{x}$, ……7分

又因为
$$0 < a < \frac{5}{3}$$
且 $0 < x < 3$,所以 $a(x-3) < 0$,所以 $\frac{a(x-3)}{e^{x-1}} \ge \frac{a(x-3)}{x}$,

当
$$0 < a \le \frac{1}{3}$$
 时,函数 $\delta(x) = ax^2 + (1 - 3a)x + a + 1$ 的对称轴为 $x = \frac{3a - 1}{2a} \le 0$,

所以 $\delta(x)$ 在(0,3)单调递增,所以 $\delta(x) > \delta(0) = a+1 > 0$,

所以h'(x) > 0,所以h(x)在(0,3)单调递增;9 分

数学参考答案及评分细则 第14页(共16页)

$\stackrel{\text{dist}}{=} \frac{1}{3} < a < \frac{5}{3} \text{ fit}, \Delta = (1 - 3a)^2 - 4a(a + 1) = 5a^2 - 10a + 1 \le -\frac{16}{9} < 0,$	
所以 $\delta(x) > 0$,所以 $h'(x) > 0$,所以 $h(x)$ 在 $(0,3)$ 单调递增;10)分
综上可知,当 $0 < a < \frac{5}{3}$ 时,均有 $h(x)$ 在 $(0,3)$ 单调递增,	
又因为 $h(1) = -a - 1 + a + 1 = 0$,所以 $h(x)$ 在 $(0,3)$ 恰有一个零点1,11	分
故当 $0 < a < \frac{5}{3}$ 时, $h(x)$ 在 $(0,+\infty)$ 恰有一个零点1,	
因此不存在 x_1, x_2 ,且 $x_1 \neq x_2$, 使得 $f(x_i) = g(x_i)(i=1,2)$.	2分 4分
(2) $\exists F(x) = f(x) - g(x)$, $\bigcup F(x) = \ln x - \frac{a+1}{x} - a(x-2)e^{1-x} + 1$,	
则 $F'(x) = \frac{1}{x} + \frac{a+1}{x^2} + a(x-3)e^{1-x} = \frac{(x+a+1)e^x + ae(x-3)x^2}{x^2e^x}$,	
$i \exists h(a) = (x+a+1)e^x + ae(x-3)x^2 = [e^x + e(x-3)x^2]a + (x+1)e^x, \qquad $	7分
设 $\varphi(x) = e^x - ex$,则 $\varphi'(x) = e^x - e$,	
当 $0 < x < 1$ 时, $\varphi'(x) < 0$,所以 $\varphi(x)$ 在 $(0,1)$ 单调递减;	
当 $x>1$ 时, $\varphi'(x)>0$,所以 $\varphi(x)$ 在 $(1,+\infty)$ 单调递增;	
所以 $\varphi(x) \ge \varphi(1) = 0$,即 $e^x \ge ex$,	3分
FITU, $h\left(\frac{5}{3}\right) = \left(x + \frac{8}{3}\right)e^x + \frac{5}{3}e(x-3)x^2 \ge \left(x + \frac{8}{3}\right)ex + \frac{5}{3}e(x-3)x^2 = \frac{1}{3}ex(5x^2 - 12x + 8)$),
因为 $\Delta = 12^2 - 4 \times 5 \times 8 = -16 < 0$,所以 $5x^2 - 12x + 8 > 0$,所以 $h\left(\frac{5}{3}\right) > 0$,9)分
所以当 $0 < a < \frac{5}{3}, x > 0$ 时, $h(a) > 0$,)分
所以 $F'(x) > 0$, $F(x)$ 在 $(0,+\infty)$ 上单调递增,又因为 $F(1) = 0$,	
所以 $F(x)$ 在 $(0,+\infty)$ 上恰有 1 个零点 1 ,	
(2)	
5	5分

数学参考答案及评分细则 第15页(共16页)

①当 $x \ge 3$ 时, $h'(x) > 0$ 恒成立,所以 $h(x)$ 在 $[3,+\infty)$ 单调递增,
又因为 $0 < a < \frac{5}{3}$,所以 $h(3) = \ln 3 - \frac{a+1}{3} - \frac{a}{e^2} + 1 > \ln 3 - \frac{a}{e^2} > 1 - \frac{a}{e^2} > 0$,
所以 $h(x) > 0$, $h(x)$ 在 $[3,+\infty)$ 不存在零点;
②当 $0 < x < 3$ 时,设 $\varphi(x) = e^{x-1} - x$,则 $\varphi'(x) = e^{x-1} - 1$,
当 $0 < x < 1$ 时, $\varphi'(x) < 0$,所以 $\varphi(x)$ 在 $(0,1)$ 单调递减;
当 $1 < x < 3$ 时, $\varphi'(x) > 0$,所以 $\varphi(x)$ 在 $(1,3)$ 单调递增;
所以 $\varphi(x) \ge \varphi(1) = 0$,即 $e^{x-1} \ge x$,因为 $x > 0$,所以 $\frac{1}{e^{x-1}} \le \frac{1}{x}$,7分
又因为 $0 < a < \frac{5}{3}$ 且 $0 < x < 3$,所以 $a(x-3) < 0$,所以 $\frac{a(x-3)}{e^{x-1}} \ge \frac{a(x-3)}{x}$,
所以 $h'(x) \ge \frac{x+a+1}{x^2} + \frac{a(x-3)}{x} = \frac{a(x^2-3x+1)+x+1}{x^2}$,
设 $\delta(a) = a(x^2 - 3x + 1) + x + 1$,则 $\delta(0) = x + 1 > 0$,
$\delta\left(\frac{5}{3}\right) = \frac{5}{3}\left(x^2 - 3x + 1\right) + x + 1 = \frac{5x^2 - 12x + 8}{3} = \frac{5\left(x - \frac{6}{5}\right)^2 + \frac{4}{5}}{3} > 0,$
所以 $\delta(a)>0$,所以 $h'(x)>0$,
综上可知,当 $0 < a < \frac{5}{3}$ 时,均有 $h(x)$ 在 $(0,3)$ 单调递增, … 10 分
又因为 $h(1) = -a - 1 + a + 1 = 0$,所以 $h(x)$ 在 $(0,3)$ 恰有一个零点1,11 分
故 $\frac{5}{3}$ 时, $h(x)$ 在 $(0,+\infty)$ 恰有一个零点1,
因此不存在 x_1, x_2 ,且 $x_1 \neq x_2$, 使得 $f(x_i) = g(x_i)(i=1,2)$

数学试题勘误

- 1、选择题第 1 题中的"则 A B=",改为"则 A∩B="
- 2、选择题第 12 题中的" (n=1,2,3)" 改为" (n=1,2,3.....)
- 3、选择题第19题
 - "平面α 平面 *VAB=l*" 改为"平面α ∩平面 *VAB=1*"

